FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding
نویسندگان
چکیده
Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins.
منابع مشابه
Chaperone domains convert prolyl isomerases into generic catalysts of protein folding.
The cis/trans isomerization of peptide bonds before proline (prolyl bonds) is a rate-limiting step in many protein folding reactions, and it is used to switch between alternate functional states of folded proteins. Several prolyl isomerases of the FK506-binding protein family, such as trigger factor, SlyD, and FkpA, contain chaperone domains and are assumed to assist protein folding in vivo. Th...
متن کاملFK506-binding protein mutational analysis: defining the active-site residue contributions to catalysis and the stability of ligand complexes.
The 12 kDa FK506-binding protein FKBP12 is a cis-trans peptidyl-prolyl isomerase that binds the macrolides FK506 and rapamycin. We have examined the role of the binding pocket residues of FKBP12 in protein-ligand interactions by making conservative substitutions of 12 of these residues by site-directed mutagenesis. For each mutant FKBP12, we measured the affinity for FK506 and rapamycin and the...
متن کاملFK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins.
The FK506 (tacrolimus)-binding protein (FKBP) type peptidyl-prolyl cis-trans isomerase (PPIase) in the hyperthermophilic archaeum Thermococcus sp. KS-1 was shown to be induced by temperature downshift to growth temperatures lower than the optimum. This PPIase (TcFKBP18) showed chaperone-like protein refolding activity in addition to PPIase activity in vitro. It refolded unfolded citrate synthas...
متن کاملFK506 binding protein from the hyperthermophilic archaeon Pyrococcus horikoshii suppresses the aggregation of proteins in Escherichia coli.
The 29-kDa FK506 binding protein (FKBP) gene is the only peptidyl-prolyl cis-trans isomerase (PPIase) gene in the genome of Pyrococcus horikoshii. We characterized the function of this FKBP (PhFKBP29) and used it to increase the production yield of soluble recombinant protein in Escherichia coli. The PPIase activity (k(cat)/K(m)) of PhFKBP29 was found to be much lower than that of other archaea...
متن کاملThe peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability.
The heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-alpha subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-alpha for proteasomal destruction. We identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2011